L01 Convex Optimization and Gradient Descent: Basics

50.579 Optimization for Machine Learning Ioannis Panageas
ISTD, SUTD

Basics

Many machine learning problems involve learning parameters $\theta \in \Theta$ of a function, towards achieving an objective. Objectives are characterized by a loss function $L: \Theta \to \mathbb{R}$.

Example in supervised learning given n samples (x_i, y_i) where x is the input:

distance between y_i and $f(x_i,\theta)$

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{l(\underbrace{f(x_i, \theta)}, y_i)}_{\text{prediction label}}$$
 Goal: $\min_{\theta \in \Theta} L(\theta)$

Typically solving $\min_{x \in \mathcal{X}} f(x)$ is NP-hard (computationally intractable).

Basics

Many machine learning problems involve learning parameters $\theta \in \Theta$ of a function, towards achieving an objective. Objectives are characterized by a loss function $L: \Theta \to \mathbb{R}$.

Example in supervised learning given n samples (x_i, y_i) where x is the input:

distance between y_i and $f(x_i, \theta)$

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{l(\underbrace{f(x_i, \theta)}, \underbrace{y_i})}_{\text{prediction label}}$$
 Goal: $\min_{\theta \in \Theta} L(\theta)$

Typically solving $\min_{x \in \mathcal{X}} f(x)$ is NP-hard (computationally intractable).

Nevertheless, for certain classes of functions f, strong theoretical guarantees and efficient optimization algorithms exist!

- Classes of functions f: Convex!
- Algorithm: Gradient Descent!

Definitions

Definition (Convex combination). $z \in \mathbb{R}^d$ is a convex combination of $x1, x2, ..., x_n \in \mathbb{R}^d$ if

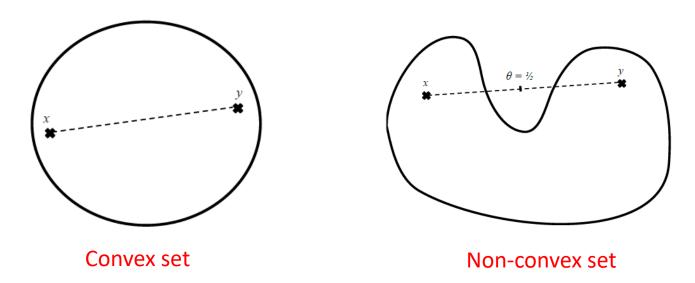
$$z = \sum \lambda_i x_i$$
, $\lambda_i \geq 0$ for all i and $\sum_i \lambda_i = 1$.

Definitions

Definition (Convex combination). $z \in \mathbb{R}^d$ is a convex combination of $x1, x2, ..., x_n \in \mathbb{R}^d$ if

$$z = \sum \lambda_i x_i$$
, $\lambda_i \geq 0$ for all i and $\sum_i \lambda_i = 1$.

Definition (Convex set). \mathcal{X} is a convex set if the convex combination of any two points in \mathcal{X} belongs also in \mathcal{X} .

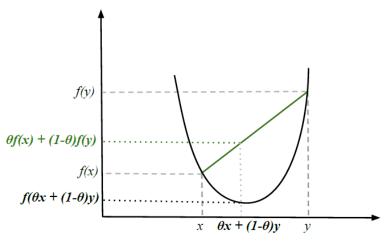


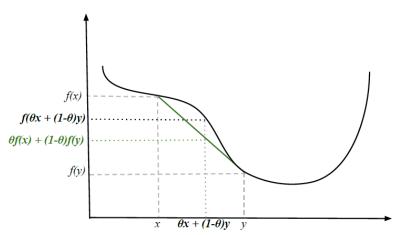
Definitions cont.

Definition (Convex function). A function f(x) is convex if and only if the domain dom(f) is a convex set and $\forall x, y \in dom(f), \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

Concave function f: -f is convex, i.e., inequality above is reversed! Moreover, if the inequality is strict, f is called strictly convex.





Convex function

Non-convex function

Basic Facts

Lemma (First order condtion for convexity). A differentiable function f(x) is convex if and only if the domain dom(f) is a convex set and $\forall x, y \in dom(f)$

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x).$$

Proof. (\Rightarrow)By convexity we have that (for all t > 0)

$$f(ty + (1-t)x) \le tf(y) + (1-t)f(x).$$

Rearranging a bit follows

$$f(x + t(y - x)) \le t(f(y) - f(x)) + f(x).$$

Dividing by *t* we conclude:

$$f(y) - f(x) \ge \frac{f(x + t(y - x)) - f(x)}{t}.$$

Basic Facts

 $Proof (\Rightarrow) cont.$ Hence

$$f(y) - f(x) \ge \lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = \nabla f(x)^{\top} (y - x).$$

Basic Facts

 $Proof (\Rightarrow) cont.$ Hence

$$f(y) - f(x) \ge \lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t} = \nabla f(x)^{\top} (y - x).$$
directional derivative

Proof. (\Leftarrow) Choose first z = tx + (1 - t)y for $t \in (0, 1)$ and moreover it holds that

- $f(x) \ge f(z) + \nabla f(z)^{\top} (x z)$.
- $f(y) \ge f(z) + \nabla f(z)^{\top} (y z)$.

Multiply first by t, second by (1 - t) and add them up.

Basic Facts cont.

Lemma (Second order condtion for convexity). A twice differentiable function f(x) is convex if and only if the domain dom(f) is a convex set and $\forall x \in dom(f)$

$$\nabla^2 f(x) \succeq 0.$$

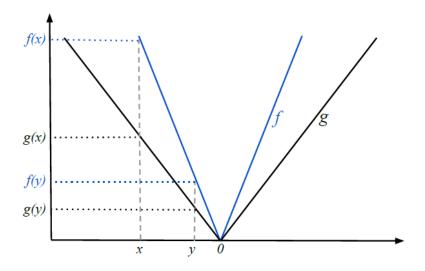
In words, the Hessian of f should be positive semi-definite.

Proof. Exercise 1 for homework...

More Definitions

Definition (Lipschitz function). A function $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ is L-Lipschitz continuous iff for L > 0 and $\forall x, y \in dom(f)$

$$||f(x) - f(y)||_2 \le L ||x - y||_2.$$



 L_f -Lipschitz continuous function f and a L_g -Lipschitz continuous function g with $L_f > L_g$.

More Definitions cont.

Definition (Smoothness). A continuously differentiable function f(x) is L-smooth if its gradient is L-Lipschitz, i.e., there exists a L > 0 and $\forall x, y \in dom(f)$

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$$
.

Definition (Strongly convex). A function f(x) is α -strongly convex if for $\alpha > 0$ and $\forall x \in dom(f)$

$$f(x) - \frac{\alpha}{2} ||x||_2^2$$
 is convex.

Exercise 2. Suppose f(x) is differentiable and α -strongly convex. Then $\forall x, y \in dom(f)$

$$f(y) - f(x) \ge \nabla f(x)^{\top} (y - x) + \frac{\alpha}{2} ||y - x||_2^2.$$

Optimization for Machine Learning

Minimizing convex functions

We examine this class of functions because are easier to minimize.

Lemma (Gradient zero). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and convex. x^* is a minimizer if and only if $\nabla f(x^*) = 0$. Hence all minimizers give same f-value.

Proof. (\Leftarrow)By FOC for convexity we have that $\forall x \in \text{dom}(f)$

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\top} (x - x^*) = f(x^*).$$

Minimizing convex functions

We examine this class of functions because are easier to minimize.

Lemma (Gradient zero). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and convex. x^* is a minimizer if and only if $\nabla f(x^*) = 0$. Hence all minimizers give same f-value.

Proof. (\Leftarrow)By FOC for convexity we have that $\forall x \in \text{dom}(f)$

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\top} (x - x^*) = f(x^*).$$

Proof. (\Rightarrow) Choose t>0 small enough such that $y:=x^*-t\nabla f(x^*)$ is in dom(f). By Taylor we have

$$f(y) - f(x^*) = \nabla f(x^*)^{\top} (y - x^*) + o(\|y - x^*\|_2)$$

= $-t \|\nabla f(x^*)\|_2^2 + o(\|t\nabla f(x^*)\|_2).$

For t small enough $f(y) - f(x^*) < 0$ if $\nabla f(x^*) \neq 0$ (contradiction).

Gradient Descent (GD) (for differentiable functions)

Definition (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable (want to minimize). The algorithm below is called gradient descent

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

Remarks

- α is called the stepsize. Intuitively the smaller, the slower the algorithm.
- α may or may not depend on k.
- If GD converges, it means that $\nabla f(x) \to 0$, so we should have "convergence" to the minimizer (for f convex)!
- The minimizers of f are fixed points of GD.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize) and L-Lipschitz. Let $R = ||x_1 - x^*||_2$, the distance between the initial point x_0 and minimizer x^* . It holds for $T = \frac{R^2L^2}{\epsilon^2}$

$$f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)-f(x^{*})\leq\epsilon,$$

with appropriately choosing $\alpha = \frac{\epsilon}{L^2}$.

Remarks

- The speed of convergence is independent of dimension d.
- This result gives a rate of $0\left(\frac{1}{\epsilon^2}\right)$. With smoothness assumptions we can do $0\left(\frac{1}{\epsilon}\right)$.
- There is Nesterov's accelerated method that can achieve $O\left(\frac{1}{\sqrt{\epsilon}}\right)$ (under smoothness).
- With smoothness and strong-convexity assumptions we can do $O\left(\ln\frac{1}{\epsilon}\right)$.
- The theorem does not imply pointwise convergence $f(x_T) \rightarrow f(x^*)$.

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^{\top} (x_t - x^*)$$
 FOC for convexity,

$$f(x_t) - f(x^*) \le \nabla f(x_t)^{\top} (x_t - x^*)$$
 FOC for convexity,
= $\frac{1}{\alpha} (x_t - x_{t+1})^{\top} (x_t - x^*)$ definition of GD,

$$f(x_{t}) - f(x^{*}) \leq \nabla f(x_{t})^{\top} (x_{t} - x^{*}) \text{ FOC for convexity,}$$

$$= \frac{1}{\alpha} (x_{t} - x_{t+1})^{\top} (x_{t} - x^{*}) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} + \|x_{t} - x_{t+1}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) \text{ law of Cosines,}$$

$$f(x_{t}) - f(x^{*}) \leq \nabla f(x_{t})^{\top} (x_{t} - x^{*}) \text{ FOC for convexity,}$$

$$= \frac{1}{\alpha} (x_{t} - x_{t+1})^{\top} (x_{t} - x^{*}) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} + \|x_{t} - x_{t+1}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) \text{ law of Cosines,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) + \frac{\alpha}{2} \|\nabla f(x_{t})\|_{2}^{2} \text{ Def. of GD,}$$

Proof. It holds that

$$f(x_{t}) - f(x^{*}) \leq \nabla f(x_{t})^{\top} (x_{t} - x^{*}) \text{ FOC for convexity,}$$

$$= \frac{1}{\alpha} (x_{t} - x_{t+1})^{\top} (x_{t} - x^{*}) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} + \|x_{t} - x_{t+1}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) \text{ law of Cosines,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) + \frac{\alpha}{2} \|\nabla f(x_{t})\|_{2}^{2} \text{ Def. of GD,}$$

$$\leq \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} - \|x_{t+1} - x^{*}\|_{2}^{2} \right) + \frac{\alpha L^{2}}{2} \text{ Exercise 3.}$$

Exercise 3. Suppose f(x) is L-Lipschitz continous.

Then $\forall x \in dom(f)$

$$\|\nabla f(x)\|_2 \leq L.$$

Proof cont. Since

$$f(x_t) - f(x^*) \le \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha L^2}{2},$$

taking the telescopic sum we have

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f(x^*) \le \frac{1}{2\alpha T} (\|x_1 - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2) + \frac{\alpha L^2}{2}.$$

$$\le \frac{R^2}{2\alpha T} + \frac{\alpha L^2}{2} = \epsilon \text{ by choosing appropriately } \alpha, T.$$

The claim follows by convexity since $\frac{1}{T} \sum_{t=1}^{T} f(x_t) \ge f\left(\frac{1}{T} \sum_{t=1}^{T} f(x_t)\right)$ (Jensen's inequality).

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize) and L-smooth. Let $R = ||x_0 - x^*||_2$. It holds for $T = \frac{2R^2L}{\epsilon}$

$$f(x_{T+1}) - f(x^*) \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Remarks

- Again speed of convergence is independent of dimension d.
- This result gives a rate of $O\left(\frac{1}{\epsilon}\right)$, different choice of stepsize.
- The theorem implies convergence $f(x_T) \to f(x^*)$.

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^{\top} (y - x) \le \frac{L}{2} ||x - y||_2^2.$$

$$f(y) - f(x) - \nabla f(y)^{\top}(x - y) = \int_0^1 \nabla f(y + t(x - y))^{\top}(x - y) dt - \nabla f(y)^{\top}(x - y)$$

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^{\top} (y - x) \le \frac{L}{2} ||x - y||_2^2.$$

$$f(y) - f(x) - \nabla f(y)^{\top}(x - y) = \int_0^1 \nabla f(y + t(x - y))^{\top}(x - y) dt - \nabla f(y)^{\top}(x - y)$$
$$= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y)\right)^{\top}(x - y)$$

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^{\top} (y - x) \le \frac{L}{2} ||x - y||_2^2.$$

$$f(y) - f(x) - \nabla f(y)^{\top}(x - y) = \int_0^1 \nabla f(y + t(x - y))^{\top}(x - y) dt - \nabla f(y)^{\top}(x - y)$$

$$= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y)\right)^{\top}(x - y)$$

$$= \left(\int_0^1 \{\nabla f(y + t(x - y)) - \nabla f(y)\} dt\right)^{\top}(x - y)$$

Before showing the proof, we show some important claims for L-smooth functions.

Claim 1. Let f be a differentiable and L-smooth, then

$$f(y) - f(x) - \nabla f(x)^{\top} (y - x) \le \frac{L}{2} ||x - y||_2^2.$$

$$f(y) - f(x) - \nabla f(y)^{\top}(x - y) = \int_0^1 \nabla f(y + t(x - y))^{\top}(x - y) dt - \nabla f(y)^{\top}(x - y)$$

$$= \left(\int_0^1 \nabla f(y + t(x - y)) dt - \nabla f(y)\right)^{\top}(x - y)$$

$$= \left(\int_0^1 \{\nabla f(y + t(x - y)) - \nabla f(y)\} dt\right)^{\top}(x - y)$$
using L-smoothness $\leq L \int_0^1 t dt \, ||x - y||_2^2 = \frac{L}{2} \, ||x - y||_2^2$.

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \le f(x - \frac{1}{L}\nabla f(x)) - f(x) \le -\frac{1}{2L} \|\nabla f(x)\|_2^2.$$

Proof. Set $z = x - \frac{1}{L}\nabla f(x)$. First inequality is trivial (definition of minizer).

$$f(z) - f(x) \le \nabla f(x)^{\top} (z - x) + \frac{L}{2} ||z - x||_2^2 \text{ using Claim 1,}$$

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \le f(x - \frac{1}{L}\nabla f(x)) - f(x) \le -\frac{1}{2L} \|\nabla f(x)\|_2^2.$$

Proof. Set $z = x - \frac{1}{L}\nabla f(x)$. First inequality is trivial (definition of minizer).

$$f(z) - f(x) \le \nabla f(x)^{\top} (z - x) + \frac{L}{2} \|z - x\|_{2}^{2} \text{ using Claim 1,}$$

$$= -\frac{1}{L} \nabla f(x)^{\top} \nabla f(x) + \frac{L}{2} \frac{1}{L^{2}} \|\nabla f(x)\|_{2}^{2},$$

Claim 2. Let f be a differentiable, convex and L-smooth, then

$$f(x^*) - f(x) \le f(x - \frac{1}{L}\nabla f(x)) - f(x) \le -\frac{1}{2L} \|\nabla f(x)\|_2^2.$$

Proof. Set $z = x - \frac{1}{L}\nabla f(x)$. First inequality is trivial (definition of minizer).

$$f(z) - f(x) \le \nabla f(x)^{\top} (z - x) + \frac{L}{2} \|z - x\|_{2}^{2} \text{ using Claim 1,}$$

$$= -\frac{1}{L} \nabla f(x)^{\top} \nabla f(x) + \frac{L}{2} \frac{1}{L^{2}} \|\nabla f(x)\|_{2}^{2},$$

$$= -\frac{1}{2L} \|\nabla f(x)\|_{2}^{2}.$$

Proof of Theorem. Assume $||x_t - x^*||_2$ is decreasing in t (Exercise 4 to prove). Using Claim 2,

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

Proof of Theorem. Assume $||x_t - x^*||_2$ is decreasing in t (**Exercise 4 to prove**).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

From convexity we get,

$$f(x_t) - f(x^*) \le \nabla f(x_t)^{\top} (x_t - x^*) \le \|\nabla f(x_t)\|_2 \|x_t - x^*\|_2$$
 (C-S inequality $\le \|\nabla f(x_t)\|_2 \|x_0 - x^*\|_2$ (Assumption).

Proof of Theorem. Assume $||x_t - x^*||_2$ is decreasing in t (**Exercise 4 to prove**).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

From convexity we get,

$$f(x_t) - f(x^*) \le \nabla f(x_t)^{\top} (x_t - x^*) \le \|\nabla f(x_t)\|_2 \|x_t - x^*\|_2$$
 (C-S inequality $\le \|\nabla f(x_t)\|_2 \|x_0 - x^*\|_2$ (Assumption).

Combining the two

$$f(x_{t+1}) - f(x^*) - (f(x_t) - f(x^*)) \le -\frac{1}{2L} \frac{(f(x_t) - f(x^*))^2}{R^2}.$$

Setting
$$\delta_t = f(x_t) - f(x^*)$$
, we get $\delta_{t+1} \leq \delta_t - \frac{\delta_t^2}{2LR^2}$

Proof of Theorem. Assume $||x_t - x^*||_2$ is decreasing in t (Exercise 4 to prove).

Using Claim 2,

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2L} \|\nabla f(x_t)\|_2^2.$$

Easy to show (skip details) $\delta_t \leq \frac{2LR^2}{t-1}$.

QED

Combining the two

$$f(x_{t+1}) - f(x^*) - (f(x_t) - f(x^*)) \le -\frac{1}{2L} \frac{(f(x_t) - f(x^*))^2}{R^2}.$$

Setting
$$\delta_t = f(x_t) - f(x^*)$$
, we get $\delta_{t+1} \leq \delta_t - \frac{\delta_t^2}{2LR^2}$

Analysis of GD for L-smooth, μ -convex

Theorem (Gradient Descent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $\|x_T - x^*\|_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Analysis of GD for L-smooth, μ -convex

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon} \right)$

$$\|x_T - x^*\|_2 \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$||x_T - x^*||_2^2 = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^*||_2^2 = ||x_T - x^*||_2^2$$

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$

$$\|x_T - x^*\|_2 \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$\begin{aligned} \|x_{T} - x^{*}\|_{2}^{2} &= \left\|x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}\right\|_{2}^{2} = \\ &= \|x_{T-1} - x^{*}\|_{2}^{2} + \frac{1}{L^{2}} \|\nabla f(x_{T-1})\|_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*}) \end{aligned}$$

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon} \right)$

$$\|x_T - x^*\|_2 \le \epsilon$$
,

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$||x_{T} - x^{*}||_{2}^{2} = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}||_{2}^{2} =$$

$$= ||x_{T-1} - x^{*}||_{2}^{2} + \frac{1}{L^{2}}||\nabla f(x_{T-1})||_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*})$$

From Exercise 2 and then Claim 2 we get

$$\frac{2}{L}\nabla f(x_{T-1})^{\top}(x^* - x_{T-1}) \leq \frac{2}{L}(f(x^*) - f(x_{T-1})) - \frac{\mu}{L} \|x^* - x_{T-1}\|_{2}^{2}.$$

$$\leq -\frac{1}{L^2} \|\nabla f(x_{T-1})\|_{2}^{2} - \frac{\mu}{L} \|x^* - x_{T-1}\|_{2}^{2}.$$

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$

$$\|x_T - x^*\|_2 \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$||x_{T} - x^{*}||_{2}^{2} = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}||_{2}^{2} =$$

$$= ||x_{T-1} - x^{*}||_{2}^{2} + \frac{1}{L^{2}}||\nabla f(x_{T-1})||_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*})$$

Therefore
$$||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L}) ||x_{T-1} - x^*||_2^2$$
.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$

$$||x_T - x^*||_2 \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Proof of Theorem. It holds that

$$||x_{T} - x^{*}||_{2}^{2} = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}||_{2}^{2} =$$

$$= ||x_{T-1} - x^{*}||_{2}^{2} + \frac{1}{L^{2}}||\nabla f(x_{T-1})||_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*})$$

Therefore
$$||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L}) ||x_{T-1} - x^*||_2^2$$
.
Thus $||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L})^T R^2 \le e^{-\frac{\mu T}{L}} R^2$.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = \|x_0 - x^*\|_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$

$$||x_T - x^*||_2 \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Remark (last iterate convergence!): $x_T \to x^*$

$$||x_{T} - x^{*}||_{2}^{2} = ||x_{T-1} - \frac{1}{L}\nabla f(x_{T-1}) - x^{*}||_{2}^{2} =$$

$$= ||x_{T-1} - x^{*}||_{2}^{2} + \frac{1}{L^{2}}||\nabla f(x_{T-1})||_{2}^{2} - 2\frac{1}{L}\nabla f(x_{T-1})^{\top}(x_{T-1} - x^{*})$$

Therefore
$$||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L}) ||x_{T-1} - x^*||_2^2$$
.
Thus $||x_T - x^*||_2^2 \le (1 - \frac{\mu}{L})^T R^2 \le e^{-\frac{\mu T}{L}} R^2$.

Projected Gradient Descent (GD)

(for differentiable functions)

Definition (Projected Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable (want to minimize) in some compact convex set \mathcal{X} . The algorithm below is called projected gradient descent

$$x_{k+1} = \Pi_{\mathcal{X}}(x_k - \alpha \nabla f(x_k)).$$

Remarks

- The projection might not be efficient (is also an optimization problem)!!
- The minimizer x^* does not necessarily satisfy $\nabla f(x^*) = 0$.

Question: When the last remark can be true?

Theorem (Projected Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize in some compact set \mathcal{X}) and L-Lipschitz. Let $R = \|x_1 - x^*\|_2$, the distance between the initial point x_0 and minimizer x^* . It holds for $T = \frac{R^2L^2}{\epsilon^2}$

$$f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)-f(x^{*})\leq\epsilon$$
,

with appropriately choosing $\alpha = \frac{\epsilon}{L^2}$.

Remark

Same guarantees as in the unconstrained case.

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^{\top} (x_t - x^*)$$
 FOC for convexity,

Proof. Set
$$y_t := x_t - \alpha \nabla f(x_t)$$
. It holds that
$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$$
$$= \frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,}$$

Proof. Set
$$y_t := x_t - \alpha \nabla f(x_t)$$
. It holds that
$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\top (x_t - x^*) \text{ FOC for convexity,}$$
$$= \frac{1}{\alpha} (x_t - y_t)^\top (x_t - x^*) \text{ definition of GD,}$$
$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right) \text{ law of Cosines,}$$

Proof. Set
$$y_t := x_t - \alpha \nabla f(x_t)$$
. It holds that
$$f(x_t) - f(x^*) \leq \nabla f(x_t)^{\top} (x_t - x^*) \text{ FOC for convexity,}$$

$$= \frac{1}{\alpha} (x_t - y_t)^{\top} (x_t - x^*) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 + \|x_t - y_t\|_2^2 - \|y_t - x^*\|_2^2 \right) \text{ law of Cosines,}$$

$$= \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|y_t - x^*\|_2^2 \right) + \frac{\alpha}{2} \|\nabla f(x_t)\|_2^2 \text{ Def. of } y_t,$$

Proof. Set $y_t := x_t - \alpha \nabla f(x_t)$. It holds that

$$f(x_{t}) - f(x^{*}) \leq \nabla f(x_{t})^{\top} (x_{t} - x^{*}) \text{ FOC for convexity,}$$

$$= \frac{1}{\alpha} (x_{t} - y_{t})^{\top} (x_{t} - x^{*}) \text{ definition of GD,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} + \|x_{t} - y_{t}\|_{2}^{2} - \|y_{t} - x^{*}\|_{2}^{2} \right) \text{ law of Cosines,}$$

$$= \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} - \|y_{t} - x^{*}\|_{2}^{2} \right) + \frac{\alpha}{2} \|\nabla f(x_{t})\|_{2}^{2} \text{ Def. of } y_{t},$$

$$\leq \frac{1}{2\alpha} \left(\|x_{t} - x^{*}\|_{2}^{2} - \|y_{t} - x^{*}\|_{2}^{2} \right) + \frac{\alpha L^{2}}{2}.$$

Recall. Suppose f(x) is L-Lipschitz continous.

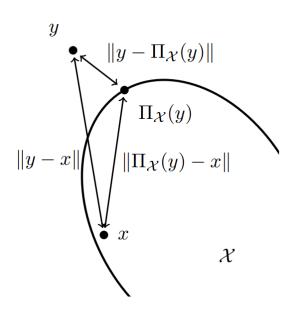
Then $\forall x \in dom(f)$

$$\|\nabla f(x)\|_2 \leq L.$$

Claim. *It is true that*

$$(\Pi_{\mathcal{X}}(y) - x)^{\top}(\Pi_{\mathcal{X}}(y) - y) \le 0.$$

Proof. By picture.



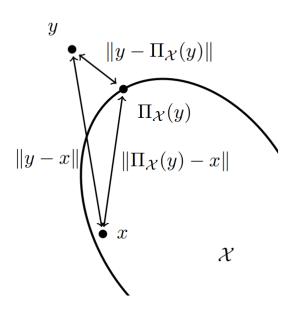
Corollary. *It is true that (Law of Cosines)*

$$||y - x||_2^2 \ge ||\Pi_{\mathcal{X}}(y) - y||_2^2 + ||\Pi_{\mathcal{X}}(y) - x||_2^2$$

Therefore
$$||y_t - x^*||_2^2 \ge ||x_{t+1} - y||_2^2 + ||x_{t+1} - x^*||_2^2$$

 $\ge ||x_{t+1} - x^*||_2^2$

Proof. By picture.



Corollary. *It is true that (Law of Cosines)*

$$||y - x||_2^2 \ge ||\Pi_{\mathcal{X}}(y) - y||_2^2 + ||\Pi_{\mathcal{X}}(y) - x||_2^2$$

Proof cont. Since

Same as in classic GD!

$$f(x_t) - f(x^*) \le \frac{1}{2\alpha} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\alpha L^2}{2},$$

taking the telescopic sum we have

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f(x^*) \le \frac{1}{2\alpha T} (\|x_1 - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2) + \frac{\alpha L^2}{2}.$$

$$\le \frac{R^2}{2\alpha T} + \frac{\alpha L^2}{2} = \epsilon \text{ by choosing appropriately } \alpha, T.$$

The claim follows by convexity since $\frac{1}{T} \sum_{t=1}^{T} f(x_t) \ge f\left(\frac{1}{T} \sum_{t=1}^{T} f(x_t)\right)$ (Jensen's inequality).

Conclusion

- Introduction to Convex Optimization
 - Easy to minimize (generally is NP-hard).
 - GD has rate of convergence $O\left(\frac{L^2}{\epsilon^2}\right)$ for L-Lipschitz.
 - GD has rate of convergence $O\left(\frac{L}{\epsilon}\right)$ for L-smooth.
 - GD has rate of convergence $O\left(\frac{L}{\mu}\ln\frac{1}{\epsilon}\right)$ for L-smooth, μ -convex.
 - Same is true for *Projected* GD (similar analysis) for constrained optimization.
- Next week we will talk about sub-gradients (nondifferentiable functions) and Stochastic Gradient Descent (SGD).